Solving Fractional Polynomial Problems by Polynomial Optimization Theory
نویسندگان
چکیده
منابع مشابه
Solving infinite-dimensional optimization problems by polynomial approximation
In this paper, we solve a class of convex infinite-dimensional optimization problems using a numerical approximation method that does not rely on discretization. Instead, we restrict the decision variable to a sequence of finite-dimensional linear subspaces of the original infinite-dimensional space and solve the corresponding finite-dimensional problems in a efficient way using structured conv...
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملA New Distribution Family Constructed by Fractional Polynomial Rank Transmutation
In this study‎, ‎a new polynomial rank transmutation is proposed with the help of‎ ‎ the idea of quadratic rank transmutation mapping (QRTM)‎. ‎This polynomial rank‎ ‎ transmutation is allowed to extend the range of the transmutation parameter from‎ ‎ [-1,1] to [-1,k]‎‎. ‎At this point‎, ‎the generated distributions gain more&lrm...
متن کاملPolynomial Optimization Problems are Eigenvalue Problems
Abstract Many problems encountered in systems theory and system identification require the solution of polynomial optimization problems, which have a polynomial objective function and polynomial constraints. Applying the method of Lagrange multipliers yields a set of multivariate polynomial equations. Solving a set of multivariate polynomials is an old, yet very relevant problem. It is little k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2018
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2018.2864620